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Abstract-Content Delivery Networks (CDNs) have evolved to 
overcome the inherent limitations of the Internet in terms of 
user perceived Quality of Service (QoS) when accessing Web 
content.  This paper examines replication in content 
distribution networks and proposes a novel mechanism for 
optimally resolving performance versus cost tradeoffs. The 
key insight behind our work is to formally and analytically 
capture the relationship between performance, bandwidth 
overhead and storage requirements for a web cache, express 
the system goals as a mathematical optimization problem, and 
solve for the optimal extent of replication that achieves the 
desired system goals with minimal overhead. We describe the 
design and implementation of a new content distribution 
network based on this concept, called CobWeb. CobWeb can 
achieve a target lookup latency while minimizing network and 
storage overhead, minimize access time while keeping 
bandwidth usage below a set limit, and alleviate “flash crowd” 
effects by rapidly replicating popular objects through fast and 
highly adaptive replica management. We outline the 
architecture of the CobWeb system, describe its novel 
optimization algorithm for intelligent resource allocation, and 
compare, through simulations and a physical deployment on 
PlanetLab, CobWeb’s informed, analysis-driven replication 
strategy to existing approaches based on passive caching and 
heuristics. 
Keywords:Contentdeliverynetworks,cobweb,control theory, 
Request balancing. 
 

I.INTRODUCTION 
Demands made on their services. Such a scenario may 
cause unmanageable levels of traffic flow, resulting in 
many requests being lost. Replicating the same content or 
services over several mirrored Web servers strategically 
placed at various locations is a method commonly used by 
service providers to improve performance and scalability. 
The user is redirected to the nearest server and this 
approach helps to reduce network impact on the response 
time of the user requests   Caching can significantly 
improve user perceived latencies as well as reduce the 
amount of aggregate network traffic. The popularity of the 
web makes caching a natural place to apply caching 
techniques to improve client performance, reduce server 
load, and minimize network traffic. Web caches to date 
have been deployed in two different settings, one driven by 
clients and one by content providers. Web caches that are 
placed close to the clients are commonly known as proxy 
caches. Such demand-side caches exploit temporal locality 
within the click stream of a single user as well as spatial 
locality stemming from the common interests of 
independent users. Proxy caches depend on passive 
monitoring and opportunistic caching, where each proxy 

only caches objects that have been requested by a client 
that is directly connected to it. Passive opportunistic 
caching severely limits potential benefits because web 
traffic is well-known to follow a Zipf distribution, with a 
heavy tail [3, 7, 1]. Since the heavy tail of the distribution 
limits spatial locality, past work has examined cooperative 
web caching, aimed at aggregating the cache contents of 
multiple web proxies to obtain greater caching benefits. 
Cooperative caching schemes that have been proposed 
include hierarchical , hash-based [1], directory based [9], 
and multi-cast schemes [2]. 
Yet past work on cooperative caching has examined only 
passive mechanisms for cache control, and an interesting 
negative result has demonstrated that cooperative caching 
provides performance benefits only within limited 
population bounds [3]. The large heavy-tail of the 
popularity distribution, combined with purely passive 
measures for cache control, makes it difficult to achieve 
high cache hit ratios. Web caches can also be placed within 
the network to aid content distribution. In particular, 
companies such as Akamai provide content distribution 
services to web site operators by placing servers in strategic 
locations to cache and replicate content. Such networks of 
servers are commonly known as content distribution 
networks (CDNs), and are driven by content providers 
rather than content consumers. In contrast to the demand-
driven nature of web proxies, most CDNs proactively 
replicate web objects throughout the network using 
heuristics aimed at load balancing and improving 
performance [1, 9]. These heuristics aim to maximize the 
effective benefit from the bandwidth spent on proactive 
content distribution, but typically do not provide any hard 
performance guarantees. The fundamental challenge faced 
by any web cache is to decide which objects to replicate 
and to what extent. Proxy web caches sidestep this problem 
by passively caching objects that local clients have 
requested. In doing so, they limit the benefits that can be 
realized through caching to only those objects that have 
been fetched by the client population. CDNs, on the other 
hand, utilize heuristics which offer little control over the 
performance characteristics and resource consumption of 
the resulting system. For example, there is no way to 
guarantee a certain hit rate in such systems, or to cap 
bandwidth consumption at a desired limit. In this paper, we 
describe a novel, principled approach for determining 
which objects to cache and to what extent in a distributed 
CDN.We analytically model the costs and performance 
benefits of replication, formalize the tradeoffs as an 
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optimization problem, and use a novel numerical solver to 
find a near-optimal solution that maximizes 
global system goals, such as achieving a targeted hit rate, 
while respecting resource limits, such as bandwidth 
consumption. Our system, CobWeb, is a global network of 
caching proxies that uses this analysis-driven approach, 
which utilizes the popularity, size, and update rate of web 
objects to compute the replication strategy. The resultant 
solution provides low latency lookup to clients while 
minimizing the storage and network overhead incurred by 
CobWeb proxies. Analytically modeling the overhead costs 
and performance benefits of replication enables CobWeb to 
convert this systems problem to an optimization problem. 
The optimization problem can then be solved to provide, 
for instance, minimal lookup latency while staying within a 
network bandwidth budget, or to achieve a targeted lookup 
performance while minimizing bandwidth consumption. 
This enables CobWeb to offer highly adjustable 
performance characteristics that is not available in 
heuristics based systems. Through simulations and 
measurements from a real world deployment, we make a 
case for structured, analysis-driven web caching over 
opportunistic heuristic driven caching. We show that our 
system provides high performance and low overhead when 
compared to passive caching systems, and propose 
deployment strategies for integrating our system into the 
Internet. The rest of this paper is structured as follows. In 
the next section, we describe the analysis-driven replication 
technique that enables CobWeb to resolve the performance-
overhead tradeoff encountered in web caching. In Section 
3, we outline the overall architecture of the CobWeb cache. 
Section 4 describes the current CobWeb implementation. In 
Section 5, we evaluate the performance of CobWeb 
through extensive simulations and a physical deployment 
on PlanetLab, and compare it to existing CDNs as well as 
passive caching.  
 

II. RELATED WORK 
As a consequence, there has been an enormous growth in 
network traffic, driven by rapid acceptance of broadband 
access, along with increases in system complexity and 
content richness [7]. The over-evolving nature of the 
Internet brings new challenges in managing and delivering 
content to users. As an example, popular Web services 
often suffer congestion and bottleneck due to the large 
demands made on their services. A sudden spike in Web 
content requests may cause heavy workload on particular 
Web server(s), and as a result a hotspot [6] can be 
generated. Coping with such unexpected demand causes 
significant strain on a Web server. Eventually the Web 
servers are totally overwhelmed with the sudden increase in 
traffic, and the Web site holding the content becomes 
temporarily unavailable.  The central insight behind 
CobWeb is that the fundamental tradeoff between 
performance and the cost required to achieve that 
performance can be treated as an optimization problem. 
CobWeb analytically models this tradeoff, poses it as an 
optimization problem, and finds the optimal replica 
placement strategy. This optimization analysis enables 
CobWeb to make informed decisions during replication in 

order to meet performance expectations with minimal cost. 
Conversely, this analysis can be used to optimize 
performance while keeping network and storage 
consumption below a fixed limit. CobWeb takes advantage 
of structured organization of the system to analytically 
model resource-performance tradeoffs. Several structured 
overlay systems, which organize the network to form well-
defined topologies with regular node degree and bounded 
diameter, have been proposed in the recent past. These 
systems called Distributed Hash Tables (DHTs) provide 
high failure resilience and scalability through 
decentralization and self-organization. By layering 
CobWeb on a DHT we not only inherit its high failure 
resilience and scalability, but also leverage its regular 
topology to concisely capture performance-overhead 
tradeoffs. We illustrate this structured analysis using Pastry 
[9] as an example overlay. Pastry organizes the network as 
a ring by assigning identifiers to nodes from a circular 
identifier space. Objects are also assigned an identifier 
from the same space and stored at the node with the closest 
identifier, called the home node. When queries are injected 
into the system, Pastry routes the queries towards the home 
node by successively matching prefix digits in the identifier 
of the queried object. This routing process is aided by long 
distance contacts with different numbers of matching prefix 
digits and takes O(logN) hops in a network of N nodes. The 
structured organization provides an opportunity for 
replication to shorten the route of the lookup path. By 
replicating objects at all nodes that are within i hops from 
the home-node, the lookup latency can be reduced to 
log(N) � i hops. We formalize this concept by defining a 
replication level for each object. An object is said to be 
replicated at level l if it is stored at all nodes in the system 
with l matching prefix digits. An l level object has lookup 
latency of l hops and is replicated at N bl nodes in the 
system. Figure 1 illustrates the concept of replication levels 
in Pastry. Structured replication of this manner enables 
CobWeb to concisely express the replication cost and 
lookup latency for each object. CobWeb extends this to 
analytically frame the global performance-overhead 
tradeoffs.   
 

III. SYSTEM ARCHITECTURE 
CobWeb operates as a globally distributed ring of 
cooperating nodes. Each CobWeb node acts as a Web 
proxy capable of serving any HTTP request. We envision 
that institutions that currently have large Web caches at 
their gateway to the Internet, will let the caches join the 
global CobWeb ring and share cache content intelligently 
and optimally. Other publicly available Web caches, such 
as Squid, may also be part of the CobWeb system taking 
the benefits independent users. The overall architecture of 
CobWeb is illustrated  CobWeb distributes objects 
uniformly between its nodes through consistent-hashing 
[11]. Each web object is assigned a unique identifier that is 
a SHA-1 hash of its URL. When a CobWeb proxy receives 
a request from a client, it routes the request through the 
underlying overlay, directing the query toward the object’s 
home node, the node whose identifier is numerically closest 
to the object’s identifier. The first node along the routing 
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path which has a copy of the object returns the object to the 
origin CobWeb proxy, which is responsible for delivering it 
to the client. Web objects are not loaded into CobWeb 
unless requested. When a URL is first requested, its home 
node is responsible for fetching the object from the origin 
web server and inserting it into the system. Subsequently, 
the home node is also responsible for renewing the object 
when it expires and propagating changes to other nodes. 
Non-cacheable web objects are simply delivered to the 
client but not stored within the CobWeb system. Home 
nodes also delete objects from the system if they do not 
receive any queries over a long period of time. CobWeb 
inherits high failure resilience from the overlay substrate. 
When a home node fails, the next closest node in the 
identifier automatically becomes the home node of an 
object. Objects for which home nodes has the sole copy, 
simply disappear from the system. This behavior is 
perfectly correct because CobWeb serves merely as a 
performance enhancing soft cache, rather than a permanent 
store. Moreover, popular objects would not be lost in this 
manner because they will be widely replicated in the 
neighborhood of the home node. Users access CobWeb in a 
transparent way without requiring any extensions or 
reconfigurations to the browser. In order take advantage of 
CobWeb, a user merely needs to append 
“.cobweb.org:8888” to the main URL of a web site. The 
http request is diverted to the closest CobWeb server 
through DNS-redirection. Subsequently, all web pages 
accessed through links on the main URL are automatically 
redirected through CobWeb. The latter is achieved through 
URL rewriting. Alternatively, CobWeb is also available as 
a conventional proxy service, which can be accessed by 
setting the proxy options in the browser to point to the 
closest CobWeb node. An important issue in any 
cooperative web cache is that a single compromised node 
can introduce misleading content into the system and 
launch phishing attacks. While, this is not a problem if 
CobWeb were to be deployed under centralized 
management, such as inside Akamai or on Planet-Lab, a 
collaborative environment poses security risks that need to 
be tackled. The security issue is further heightened because 
web objects are not self-certifying. To reduce this 
vulnerability, we propose a collaborative approach for 
certifying web content. A small quorum of CobWeb nodes 
can independently fetch objects and sign objects using a 
shared key exchanged through threshold cryptographic 
protocols [16, 15].   

 
Fig1. System Architecture. 

IV. POPULARITY AGGREGATION 
The optimization algorithm described  the performance and 
cost characteristics of the object. The object-specific cost 
information, such as the size, update rate, and server 
imposed load limit, can be stored and replicated along with 
the object. The workload-specific characteristics, that is, 
the query rate of an object, on the other hand, needs to be 
aggregated in the system, since queries are spread over all 
nodes caching that object. A naive way to compute the 
query rate of an object, is to have each node periodically 
measure, in some aggregation interval, the number of 
queries an object receives in a given period. However, if 
the query distribution is heavy tailed, as if often the case in 
web traffic [3], there can be several orders of magnitude of 
difference between the query rates of the popular and 
unpopular objects. Hence, no single aggregation interval 
would be large enough to accurately estimate the query 
rates of all objects and small enough to allow the system to 
detect rapid changes in the popularity of objects, which 
may arise during a flash crowd. One alternative is to 
measure the inter-arrival times of each object at each node 
and use those measurements to determine the query rate. 
However, since objects may be replicated at different 
nodes, any single node cannot estimate the global query 
inter-arrival time of an object. CobWeb uses a hybrid of the 
two approaches, namely query-rate estimation and inter-
arrival time estimation. Nodes with cached objects measure 
the number of queries for those objects in each aggregation 
interval. Each node periodically transmits the data collected 
for each object towards the home node of that object. Each 
node along the path of the route aggregates the data they 
receive and continues to route the data toward the home 
node. Ultimately, each node receives a count of queries for 
all the objects for which it is the home node. To reduce 
aggregation overhead, CobWeb sends aggregation 
messages only if they are non-zero. This reduces the 
number of aggregation messages sent at each aggregation 
interval. Home nodes, then estimate the inter-arrival time 
using the aggregate query-rate received by it. For 
unpopular objects which may not be queried for in many 
aggregation intervals, the home node estimates the query 
inter-arrival time in terms of the number of aggregation 
intervals before  a query is seen. That is, if an object 
receives one query every ith aggregation interval, it has a 
query inter arrival time of i. For popular objects, which 
many queries in the same aggregation intervals, it estimates 
their query inter-arrival time as 1=j, where j is the number 
of queries seen in a single aggregation interval. This 
technique allows us to choose very small values for the 
aggregation interval, which in turn enables CobWeb to 
quickly detect changes in the query rate and adapt 
accordingly. 
 

ALGORITHM 
//node status change 
   Pro_space[0]=0; 
Load-diff=0; 
Load_dif_sum=0; 
For(k=1;k<=n;k++){ 
  Fi(load_p –peer[k].load){ 

Kothuru Srinivasulu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2462-2466

www.ijcsit.com 2464



   Load_change= load_p –peer[k].load; 
  New_pro_space(load_dif, Pro_space); 
 Load_dif_change=load_dif_change+load_diff; 
} 
Change_pro_space(lod_dif_change,pro_space); 
} 
// load balanceing  
 If(pro_space[]==NULL) 
  Server_request(); 
Else 
  Double y= rand(); 
Int req_send=0; int j=0; 
While(pro_space[j]==1){ 
Send_to(peer[j-1].addr); 
Req_send=1; 
}j++}} 
 
 

V. IMPLEMENTATION 
The previous sections outlined the core distributed 
algorithms and mechanisms that enable a CDN to achieve 
high performance while respecting resource consumption 
constraints. In this section, we describe the CobWeb 
implementation and show how the algorithmic advantages 
of the analytical framework can be made practical, 
transparent and easy to use. CobWeb is implemented on 
Free Pastry v1.3, an open source implementation of Pastry 
[5]. Layering CobWeb on Pastry enables the system to 
build on the strong failureresilience, scalability, worst-case 
performance guarantees provided by Pastry, and to 
complement these properties with strong average-case 
performance guarantees. The CobWeb replication 
framework is practical and straight-forward to implement. 
Table 1 shows the size of  the different components of the 
system. The total complexity of the numerical solver, 
combined with the high performance web cache front-end, 
is roughly comparable to the complexity of the Pastry 
overlay. In fact, most of the complexity resides in mundane 
issues like HTTP parsing, streaming content from multiple 
sources to clients, and coordination of concurrent threads, 
as opposed to the numerical solver. We envision that 
CobWeb will be deployed on server class hosts deployed 
close to the network core, under a single administrative 
authority. This is identical to the Akamai model as well as 
the current deployment model where our research group 
runs the open CobWeb cache on PlanetLab. Even though 
CobWeb is built on a peer-to peer proxy that can integrate 
any host anywhere, admitting poorly provisioned hosts 
located behind cable lines into the system is unlikely to 
offset the additional overhead they entail. Further, in a 
collaborative deployment, where nodes under different 
administrative domains are part of the CobWeb network, 
some nodes may be malicious and either attack the overlay 
or corrupt the content cached in the system. This problem 
can be easily solved if web servers provide digitally signed 
certificates along with content. An alternative solution that 
does not require changes to servers is to use threshold-
cryptography to generate a certificate for content [14, 15]. 
When new content is to be inserted into the ring, the object 
can be fetched and partially-signed by a quorum of ring 

members. If the quorum size exceeds a threshold, partial 
signatures may be combined into a single signature that 
attests that t out of n nodes in a wedge on the CobWeb ring 
agree on the content. Such a scheme can ensure that rogue 
nodes below a threshold level cannot corrupt the system 
with bad content and other measures [4] can protect the 
underlying substrate from malicious nodes. However, the 
design and implementation of such a threshold-
cryptographic scheme for a non-collaborative environment 
is beyond the scope 
table1. Complexity of code 

 
 
 

 
Fig2. Unit time & Server behavior 

 
CONCLUSION 

In this paper  the fundamental tradeoff between 
performance and cost of web caches in an analytical model, 
and pose it as a mathematical optimization problem. We 
propose a novel algorithm and show that the optimization 
problem can be resolved in a near-optimal fashion.  how 
our analytical model and its numerical solution can be 
implemented in a distributed fashion on a peer-to-peer 
substrate. The resulting content distribution network, 
CobWeb, benefits from the resilience and self-organizing 
properties of distributed hash tables, allowing it to scale 
and recover from failures. In addition, CobWeb is able to 
achieve a target lookup latency while minimizing network 
and storage overhead, optimize lookup latency while 
meeting a resource consumption budget, and adapt quickly 
to changes in workloads. 
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