
Performance Evaluation in Content Delivery
Networks Using Fluid Queue Algorithm

Kothuru Srinivasulu , Nalini N

School of Computer Science and Engineering
VIT University, Vellore-632014, Tamilnadu, India

Abstract-Content Delivery Networks (CDNs) have evolved to
overcome the inherent limitations of the Internet in terms of
user perceived Quality of Service (QoS) when accessing Web
content. This paper examines replication in content
distribution networks and proposes a novel mechanism for
optimally resolving performance versus cost tradeoffs. The
key insight behind our work is to formally and analytically
capture the relationship between performance, bandwidth
overhead and storage requirements for a web cache, express
the system goals as a mathematical optimization problem, and
solve for the optimal extent of replication that achieves the
desired system goals with minimal overhead. We describe the
design and implementation of a new content distribution
network based on this concept, called CobWeb. CobWeb can
achieve a target lookup latency while minimizing network and
storage overhead, minimize access time while keeping
bandwidth usage below a set limit, and alleviate “flash crowd”
effects by rapidly replicating popular objects through fast and
highly adaptive replica management. We outline the
architecture of the CobWeb system, describe its novel
optimization algorithm for intelligent resource allocation, and
compare, through simulations and a physical deployment on
PlanetLab, CobWeb’s informed, analysis-driven replication
strategy to existing approaches based on passive caching and
heuristics.
Keywords:Contentdeliverynetworks,cobweb,control theory,
Request balancing.

I.INTRODUCTION
Demands made on their services. Such a scenario may
cause unmanageable levels of traffic flow, resulting in
many requests being lost. Replicating the same content or
services over several mirrored Web servers strategically
placed at various locations is a method commonly used by
service providers to improve performance and scalability.
The user is redirected to the nearest server and this
approach helps to reduce network impact on the response
time of the user requests Caching can significantly
improve user perceived latencies as well as reduce the
amount of aggregate network traffic. The popularity of the
web makes caching a natural place to apply caching
techniques to improve client performance, reduce server
load, and minimize network traffic. Web caches to date
have been deployed in two different settings, one driven by
clients and one by content providers. Web caches that are
placed close to the clients are commonly known as proxy
caches. Such demand-side caches exploit temporal locality
within the click stream of a single user as well as spatial
locality stemming from the common interests of
independent users. Proxy caches depend on passive
monitoring and opportunistic caching, where each proxy

only caches objects that have been requested by a client
that is directly connected to it. Passive opportunistic
caching severely limits potential benefits because web
traffic is well-known to follow a Zipf distribution, with a
heavy tail [3, 7, 1]. Since the heavy tail of the distribution
limits spatial locality, past work has examined cooperative
web caching, aimed at aggregating the cache contents of
multiple web proxies to obtain greater caching benefits.
Cooperative caching schemes that have been proposed
include hierarchical , hash-based [1], directory based [9],
and multi-cast schemes [2].
Yet past work on cooperative caching has examined only
passive mechanisms for cache control, and an interesting
negative result has demonstrated that cooperative caching
provides performance benefits only within limited
population bounds [3]. The large heavy-tail of the
popularity distribution, combined with purely passive
measures for cache control, makes it difficult to achieve
high cache hit ratios. Web caches can also be placed within
the network to aid content distribution. In particular,
companies such as Akamai provide content distribution
services to web site operators by placing servers in strategic
locations to cache and replicate content. Such networks of
servers are commonly known as content distribution
networks (CDNs), and are driven by content providers
rather than content consumers. In contrast to the demand-
driven nature of web proxies, most CDNs proactively
replicate web objects throughout the network using
heuristics aimed at load balancing and improving
performance [1, 9]. These heuristics aim to maximize the
effective benefit from the bandwidth spent on proactive
content distribution, but typically do not provide any hard
performance guarantees. The fundamental challenge faced
by any web cache is to decide which objects to replicate
and to what extent. Proxy web caches sidestep this problem
by passively caching objects that local clients have
requested. In doing so, they limit the benefits that can be
realized through caching to only those objects that have
been fetched by the client population. CDNs, on the other
hand, utilize heuristics which offer little control over the
performance characteristics and resource consumption of
the resulting system. For example, there is no way to
guarantee a certain hit rate in such systems, or to cap
bandwidth consumption at a desired limit. In this paper, we
describe a novel, principled approach for determining
which objects to cache and to what extent in a distributed
CDN.We analytically model the costs and performance
benefits of replication, formalize the tradeoffs as an

Kothuru Srinivasulu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2462-2466

www.ijcsit.com 2462

optimization problem, and use a novel numerical solver to
find a near-optimal solution that maximizes
global system goals, such as achieving a targeted hit rate,
while respecting resource limits, such as bandwidth
consumption. Our system, CobWeb, is a global network of
caching proxies that uses this analysis-driven approach,
which utilizes the popularity, size, and update rate of web
objects to compute the replication strategy. The resultant
solution provides low latency lookup to clients while
minimizing the storage and network overhead incurred by
CobWeb proxies. Analytically modeling the overhead costs
and performance benefits of replication enables CobWeb to
convert this systems problem to an optimization problem.
The optimization problem can then be solved to provide,
for instance, minimal lookup latency while staying within a
network bandwidth budget, or to achieve a targeted lookup
performance while minimizing bandwidth consumption.
This enables CobWeb to offer highly adjustable
performance characteristics that is not available in
heuristics based systems. Through simulations and
measurements from a real world deployment, we make a
case for structured, analysis-driven web caching over
opportunistic heuristic driven caching. We show that our
system provides high performance and low overhead when
compared to passive caching systems, and propose
deployment strategies for integrating our system into the
Internet. The rest of this paper is structured as follows. In
the next section, we describe the analysis-driven replication
technique that enables CobWeb to resolve the performance-
overhead tradeoff encountered in web caching. In Section
3, we outline the overall architecture of the CobWeb cache.
Section 4 describes the current CobWeb implementation. In
Section 5, we evaluate the performance of CobWeb
through extensive simulations and a physical deployment
on PlanetLab, and compare it to existing CDNs as well as
passive caching.

II. RELATED WORK
As a consequence, there has been an enormous growth in
network traffic, driven by rapid acceptance of broadband
access, along with increases in system complexity and
content richness [7]. The over-evolving nature of the
Internet brings new challenges in managing and delivering
content to users. As an example, popular Web services
often suffer congestion and bottleneck due to the large
demands made on their services. A sudden spike in Web
content requests may cause heavy workload on particular
Web server(s), and as a result a hotspot [6] can be
generated. Coping with such unexpected demand causes
significant strain on a Web server. Eventually the Web
servers are totally overwhelmed with the sudden increase in
traffic, and the Web site holding the content becomes
temporarily unavailable. The central insight behind
CobWeb is that the fundamental tradeoff between
performance and the cost required to achieve that
performance can be treated as an optimization problem.
CobWeb analytically models this tradeoff, poses it as an
optimization problem, and finds the optimal replica
placement strategy. This optimization analysis enables
CobWeb to make informed decisions during replication in

order to meet performance expectations with minimal cost.
Conversely, this analysis can be used to optimize
performance while keeping network and storage
consumption below a fixed limit. CobWeb takes advantage
of structured organization of the system to analytically
model resource-performance tradeoffs. Several structured
overlay systems, which organize the network to form well-
defined topologies with regular node degree and bounded
diameter, have been proposed in the recent past. These
systems called Distributed Hash Tables (DHTs) provide
high failure resilience and scalability through
decentralization and self-organization. By layering
CobWeb on a DHT we not only inherit its high failure
resilience and scalability, but also leverage its regular
topology to concisely capture performance-overhead
tradeoffs. We illustrate this structured analysis using Pastry
[9] as an example overlay. Pastry organizes the network as
a ring by assigning identifiers to nodes from a circular
identifier space. Objects are also assigned an identifier
from the same space and stored at the node with the closest
identifier, called the home node. When queries are injected
into the system, Pastry routes the queries towards the home
node by successively matching prefix digits in the identifier
of the queried object. This routing process is aided by long
distance contacts with different numbers of matching prefix
digits and takes O(logN) hops in a network of N nodes. The
structured organization provides an opportunity for
replication to shorten the route of the lookup path. By
replicating objects at all nodes that are within i hops from
the home-node, the lookup latency can be reduced to
log(N) � i hops. We formalize this concept by defining a
replication level for each object. An object is said to be
replicated at level l if it is stored at all nodes in the system
with l matching prefix digits. An l level object has lookup
latency of l hops and is replicated at N bl nodes in the
system. Figure 1 illustrates the concept of replication levels
in Pastry. Structured replication of this manner enables
CobWeb to concisely express the replication cost and
lookup latency for each object. CobWeb extends this to
analytically frame the global performance-overhead
tradeoffs.

III. SYSTEM ARCHITECTURE
CobWeb operates as a globally distributed ring of
cooperating nodes. Each CobWeb node acts as a Web
proxy capable of serving any HTTP request. We envision
that institutions that currently have large Web caches at
their gateway to the Internet, will let the caches join the
global CobWeb ring and share cache content intelligently
and optimally. Other publicly available Web caches, such
as Squid, may also be part of the CobWeb system taking
the benefits independent users. The overall architecture of
CobWeb is illustrated CobWeb distributes objects
uniformly between its nodes through consistent-hashing
[11]. Each web object is assigned a unique identifier that is
a SHA-1 hash of its URL. When a CobWeb proxy receives
a request from a client, it routes the request through the
underlying overlay, directing the query toward the object’s
home node, the node whose identifier is numerically closest
to the object’s identifier. The first node along the routing

Kothuru Srinivasulu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2462-2466

www.ijcsit.com 2463

path which has a copy of the object returns the object to the
origin CobWeb proxy, which is responsible for delivering it
to the client. Web objects are not loaded into CobWeb
unless requested. When a URL is first requested, its home
node is responsible for fetching the object from the origin
web server and inserting it into the system. Subsequently,
the home node is also responsible for renewing the object
when it expires and propagating changes to other nodes.
Non-cacheable web objects are simply delivered to the
client but not stored within the CobWeb system. Home
nodes also delete objects from the system if they do not
receive any queries over a long period of time. CobWeb
inherits high failure resilience from the overlay substrate.
When a home node fails, the next closest node in the
identifier automatically becomes the home node of an
object. Objects for which home nodes has the sole copy,
simply disappear from the system. This behavior is
perfectly correct because CobWeb serves merely as a
performance enhancing soft cache, rather than a permanent
store. Moreover, popular objects would not be lost in this
manner because they will be widely replicated in the
neighborhood of the home node. Users access CobWeb in a
transparent way without requiring any extensions or
reconfigurations to the browser. In order take advantage of
CobWeb, a user merely needs to append
“.cobweb.org:8888” to the main URL of a web site. The
http request is diverted to the closest CobWeb server
through DNS-redirection. Subsequently, all web pages
accessed through links on the main URL are automatically
redirected through CobWeb. The latter is achieved through
URL rewriting. Alternatively, CobWeb is also available as
a conventional proxy service, which can be accessed by
setting the proxy options in the browser to point to the
closest CobWeb node. An important issue in any
cooperative web cache is that a single compromised node
can introduce misleading content into the system and
launch phishing attacks. While, this is not a problem if
CobWeb were to be deployed under centralized
management, such as inside Akamai or on Planet-Lab, a
collaborative environment poses security risks that need to
be tackled. The security issue is further heightened because
web objects are not self-certifying. To reduce this
vulnerability, we propose a collaborative approach for
certifying web content. A small quorum of CobWeb nodes
can independently fetch objects and sign objects using a
shared key exchanged through threshold cryptographic
protocols [16, 15].

Fig1. System Architecture.

IV. POPULARITY AGGREGATION
The optimization algorithm described the performance and
cost characteristics of the object. The object-specific cost
information, such as the size, update rate, and server
imposed load limit, can be stored and replicated along with
the object. The workload-specific characteristics, that is,
the query rate of an object, on the other hand, needs to be
aggregated in the system, since queries are spread over all
nodes caching that object. A naive way to compute the
query rate of an object, is to have each node periodically
measure, in some aggregation interval, the number of
queries an object receives in a given period. However, if
the query distribution is heavy tailed, as if often the case in
web traffic [3], there can be several orders of magnitude of
difference between the query rates of the popular and
unpopular objects. Hence, no single aggregation interval
would be large enough to accurately estimate the query
rates of all objects and small enough to allow the system to
detect rapid changes in the popularity of objects, which
may arise during a flash crowd. One alternative is to
measure the inter-arrival times of each object at each node
and use those measurements to determine the query rate.
However, since objects may be replicated at different
nodes, any single node cannot estimate the global query
inter-arrival time of an object. CobWeb uses a hybrid of the
two approaches, namely query-rate estimation and inter-
arrival time estimation. Nodes with cached objects measure
the number of queries for those objects in each aggregation
interval. Each node periodically transmits the data collected
for each object towards the home node of that object. Each
node along the path of the route aggregates the data they
receive and continues to route the data toward the home
node. Ultimately, each node receives a count of queries for
all the objects for which it is the home node. To reduce
aggregation overhead, CobWeb sends aggregation
messages only if they are non-zero. This reduces the
number of aggregation messages sent at each aggregation
interval. Home nodes, then estimate the inter-arrival time
using the aggregate query-rate received by it. For
unpopular objects which may not be queried for in many
aggregation intervals, the home node estimates the query
inter-arrival time in terms of the number of aggregation
intervals before a query is seen. That is, if an object
receives one query every ith aggregation interval, it has a
query inter arrival time of i. For popular objects, which
many queries in the same aggregation intervals, it estimates
their query inter-arrival time as 1=j, where j is the number
of queries seen in a single aggregation interval. This
technique allows us to choose very small values for the
aggregation interval, which in turn enables CobWeb to
quickly detect changes in the query rate and adapt
accordingly.

ALGORITHM
//node status change
 Pro_space[0]=0;
Load-diff=0;
Load_dif_sum=0;
For(k=1;k<=n;k++){
 Fi(load_p –peer[k].load){

Kothuru Srinivasulu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2462-2466

www.ijcsit.com 2464

 Load_change= load_p –peer[k].load;
 New_pro_space(load_dif, Pro_space);
 Load_dif_change=load_dif_change+load_diff;
}
Change_pro_space(lod_dif_change,pro_space);
}
// load balanceing
 If(pro_space[]==NULL)
 Server_request();
Else
 Double y= rand();
Int req_send=0; int j=0;
While(pro_space[j]==1){
Send_to(peer[j-1].addr);
Req_send=1;
}j++}}

V. IMPLEMENTATION
The previous sections outlined the core distributed
algorithms and mechanisms that enable a CDN to achieve
high performance while respecting resource consumption
constraints. In this section, we describe the CobWeb
implementation and show how the algorithmic advantages
of the analytical framework can be made practical,
transparent and easy to use. CobWeb is implemented on
Free Pastry v1.3, an open source implementation of Pastry
[5]. Layering CobWeb on Pastry enables the system to
build on the strong failureresilience, scalability, worst-case
performance guarantees provided by Pastry, and to
complement these properties with strong average-case
performance guarantees. The CobWeb replication
framework is practical and straight-forward to implement.
Table 1 shows the size of the different components of the
system. The total complexity of the numerical solver,
combined with the high performance web cache front-end,
is roughly comparable to the complexity of the Pastry
overlay. In fact, most of the complexity resides in mundane
issues like HTTP parsing, streaming content from multiple
sources to clients, and coordination of concurrent threads,
as opposed to the numerical solver. We envision that
CobWeb will be deployed on server class hosts deployed
close to the network core, under a single administrative
authority. This is identical to the Akamai model as well as
the current deployment model where our research group
runs the open CobWeb cache on PlanetLab. Even though
CobWeb is built on a peer-to peer proxy that can integrate
any host anywhere, admitting poorly provisioned hosts
located behind cable lines into the system is unlikely to
offset the additional overhead they entail. Further, in a
collaborative deployment, where nodes under different
administrative domains are part of the CobWeb network,
some nodes may be malicious and either attack the overlay
or corrupt the content cached in the system. This problem
can be easily solved if web servers provide digitally signed
certificates along with content. An alternative solution that
does not require changes to servers is to use threshold-
cryptography to generate a certificate for content [14, 15].
When new content is to be inserted into the ring, the object
can be fetched and partially-signed by a quorum of ring

members. If the quorum size exceeds a threshold, partial
signatures may be combined into a single signature that
attests that t out of n nodes in a wedge on the CobWeb ring
agree on the content. Such a scheme can ensure that rogue
nodes below a threshold level cannot corrupt the system
with bad content and other measures [4] can protect the
underlying substrate from malicious nodes. However, the
design and implementation of such a threshold-
cryptographic scheme for a non-collaborative environment
is beyond the scope
table1. Complexity of code

Fig2. Unit time & Server behavior

CONCLUSION

In this paper the fundamental tradeoff between
performance and cost of web caches in an analytical model,
and pose it as a mathematical optimization problem. We
propose a novel algorithm and show that the optimization
problem can be resolved in a near-optimal fashion. how
our analytical model and its numerical solution can be
implemented in a distributed fashion on a peer-to-peer
substrate. The resulting content distribution network,
CobWeb, benefits from the resilience and self-organizing
properties of distributed hash tables, allowing it to scale
and recover from failures. In addition, CobWeb is able to
achieve a target lookup latency while minimizing network
and storage overhead, optimize lookup latency while
meeting a resource consumption budget, and adapt quickly
to changes in workloads.

VI.REFERENCES
[1] H. Ackermann, S. Fischer, M. Hoefer, and M.

Sch¨ongens.Distributed algorithms for qos load balancing. In
Proceedings of the twenty-first annual symposium on Parallelism in
algorithms and architectures, SPAA ’09, pages 197–203, 2009.

[2] C. P. J. Adolphs and P. Berenbrink. Improved bounds for discrete
diffusive load balancing. In IPDPS, pages 820–826. IEEE Computer
Society, 2012.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice Hall, 1993.

[4] J. Allard, S. Cotin, F. Faure, P. Bensoussan, F. Poyer, C. Duriez, H.
Delingette, L. Grisoni, et al. Sofa-an open source framework for

Kothuru Srinivasulu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2462-2466

www.ijcsit.com 2465

medical simulation. In Medicine Meets Virtual Reality, MMVR 15,
2007.

[5] D. Arora, A. Feldmann, G. Schaffrath, and S. Schmid. On the benefit
of virtualization: Strategies for flexible server allocation. In
Proceedings of USENIX Workshop on Hot Topics in Management
of Internet, Cloud, and Enterprise Networks and Services (Hot-ICE
’11), 2011.

[6] O. Beaumont, H. Casanova, A. Legrand, Y. Robert, and Y. Yang.
Scheduling divisible loads on star and tree networks: results and
open problems. Parallel and Distributed Systems, IEEE Transactions
on, 16(3):207–218, 2005.

[7] P . Berenbrink, M. Hoefer, and T. Sauerwald. Distributed selfish load
balancing on networks. In Proceedings of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’11, pages 1487–1497, 2011.

[8] D. P. Bertsekas. Auction algorithms for network flow problems: A
tutorial introduction. Computational Optimization and Applications,
1:7–66, 1992.

[9] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed
computation: numerical methods. Prentice-Hall, 1989.

[10] A. Caprara, H. Kellerer, and U. Pferschy. A PTAS for the multiple
subset sum problem with different knapsack capacities. Information
Processing Letters, 73(3-4), 2000.

[11] E. Chan-Tin and N. Hopper. Accurate and provably secure latency
estimation with treeple. In NDSS. The Internet Society, 2011.

[12] A. Chawla, B. Reed, K. Juhnke, and G. Syed. Semantics of caching
with spoca: a stateless, proportional, optimallyconsistent addressing
algorithm. In USENIXATC, 2011.

[13] Y. Chen, R. H. Katz, and J. Kubiatowicz. Dynamic replica
placement for scalable content delivery. In IPTPS, Proceedigs, pages
306–318, London, UK, 2002. Springer-Verlag.

[14] G. Christodoulou and E. Koutsoupias. The price of anarchy of finite
congestion games. In STOC, Proceedings, pages 67–73, 2005.

[15] E. Cronin, S. Jamin, C. Jin, A. R. Kurc, D. Raz, Y. Shavitt, and S.
Member. Constrained mirror placement on the internet. In JSAC,
pages 31–40, 2002.

[16] M. Drozdowski and M. Lawenda. Scheduling multiple divisible
loads in homogeneous star systems. Journal of Scheduling,
11(5):347–356, 2008.

[17] P. Dutot, L. Eyraud, G. Mouni´e, and D. Trystram. Bi-criteria
algorithm for scheduling jobs on cluster platforms. In IPDPS, Proc.,
pages 125–132. ACM, 2004.

[18] M. Freedman. Experiences with coralcdn: A five-year operational
view

Kothuru Srinivasulu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2462-2466

www.ijcsit.com 2466

